Respuesta :

The consecutive numbers would be : x and (x+1).

We have the following equation:

x³+(x+1)³=1241

we solve this equation:

x³+(x+1)³=1241
x³+x³+3x²+3x+1=1241
2x³+3x²+3x+1-1241=0
2x³+3x²+3x-1240=0

we have to solve this expression (2x³+3x²+3x-1240=0) by Ruffini´s method.
1241=2³*5*31
The possible solution could be 2³=8 

               2           3            3         - 1240

8                        16        152           1240
------------------------------------------------------------------
              2          19        155                 0


x=8
(x+1)=8+1=9

The numbers whose cubes add up to 1241 are 8 and 9.

we can check it out our answer:

8³+9³=512+729=1241