Respuesta :
the energy at n level of hydrogen atom energy level =13.6/n^2
substiture the respective n values in the equation above and find the difference in the energy levels
instagram : imrajsingh
gimme a follow^ :)
substiture the respective n values in the equation above and find the difference in the energy levels
instagram : imrajsingh
gimme a follow^ :)
Answer:
4.58*10^(-19) J
Explanation:
Using the Rydberg's equation:
[tex]\frac{1}{\lambda} = R \times (\frac{1}{n^2_{final}} - \frac{1}{n^2_{initial}}) [/tex]
where
[tex]\lambda[/tex] is the wavelength of the photon;
R is the Rydberg's constant = 1.0974*10^7 m^(-1)
final level is 5 and initial level is 2.
[tex]\frac{1}{\lambda} = 1.0974 \times 10^7 \times (\frac{1}{5^2} - \frac{1}{2^2})[/tex]
[tex]\frac{1}{\lambda} = -2304540 m^{-1} [/tex]
[tex]\lambda = -4.339 \times 10^{-7} \;m [/tex]
Energy change is calculated with the next formula:
E = h*c/λ
where h is the Planck's constant = 6.626*10^(-34) J*s, and c is the speed of light = 299,792,458 m/s
E = 6.626*10^(-34)*299,792,458/-4.339*10^(-7)
E = 4.58*10^(-19) J