Respuesta :
Answer :
- (f•g)(x) = x^3 - 8x^2 -65x
Steps :
- f(x) = (x^2-13x)
- g(x) = (x+5)
thus,
- (f•g)(x) = (x^2-13x)(x+5)
- (f•g)(x) = x^2(x+5) -13x(x+5)
- (f•g)(x) = x^3 + 5x^2 -13x^2 -65x
- (f•g)(x) = x^3 - 8x^2 -65x
Answer:
[tex](fg)(x) =x^3-8x^2-65x[/tex]
Step-by-step explanation:
Given functions:
[tex]f(x) =x^2-13x\\\\g(x) = x+5[/tex]
To find the product of f(x) and g(x), simply multiply the two functions together:
[tex](fg)(x) = f(x) \cdot g(x)\\\\(fg)(x) = (x^2 - 13x)(x + 5)\\\\(fg)(x) = x^2(x + 5) - 13x(x + 5)\\\\(fg)(x) =x^3+5x^2-13x^2-65x\\\\(fg)(x) =x^3-8x^2-65x\\\\[/tex]
Therefore, (fg)(x) = x³ - 8x² - 65x.