Respuesta :
assuming you mean [tex]f(x)=\frac{3}{x+2}-\sqrt{x-3}[/tex]
subsitute
[tex]f(x)=\frac{3}{x+2}-\sqrt{x-3}[/tex]
[tex]f(7)=\frac{3}{7+2}-\sqrt{7-3}[/tex]
[tex]f(7)=\frac{3}{9}-\sqrt{4}[/tex]
[tex]f(7)=\frac{1}{3}-2[/tex]
[tex]f(7)=\frac{1}{3}-\frac{6}{3}[/tex]
[tex]f(7)=\frac{-5}{3}[/tex]
f(7)≈1.6666
round
f(7)=1.67
subsitute
[tex]f(x)=\frac{3}{x+2}-\sqrt{x-3}[/tex]
[tex]f(7)=\frac{3}{7+2}-\sqrt{7-3}[/tex]
[tex]f(7)=\frac{3}{9}-\sqrt{4}[/tex]
[tex]f(7)=\frac{1}{3}-2[/tex]
[tex]f(7)=\frac{1}{3}-\frac{6}{3}[/tex]
[tex]f(7)=\frac{-5}{3}[/tex]
f(7)≈1.6666
round
f(7)=1.67
Answer:
-1.67
Step-by-step explanation:
We are given that
[tex]f(x)=\frac{3}{x+2}-\sqrt{x-3}[/tex]
We have to find the value of f(7).
Substitute x=7
Then, we get
[tex]f(7)=\frac{3}{7+2}-\sqrt{7-3}[/tex]
[tex]f(7)=\frac{3}{9}-\sqrt4[/tex]
[tex]f(7)=\frac{1}{3}-2[/tex]
[tex]f(7)=\frac{1-6}{3}=-\frac{5}{3}=-1.67[/tex]
Hence, f(7)=-1.67