Respuesta :

[tex]4x^2-12x+9=5\\4x^2-12x+9-5=0\\4x^2-12x+4=0 \ \ \ |:4\\x^2-3x+1=0 \\ \\ x= \cfrac{3б \sqrt{(-3)^2-4} }{2}= \cfrac{3б \sqrt{9-4} }{2}= \cfrac{3б \sqrt{5} }{2} [/tex]

Correct answers are C and E

Answer:

[tex]x=\frac{-\sqrt{5}+3}{2}[/tex] and [tex]x=\frac{\sqrt{5}+3}{2}[/tex]

Step-by-step explanation:

[tex]4x^2-12x+9=5[/tex]

To solve for x we need to make right hand side 0

Subtract 5 on both sides

[tex]4x^2-12x+4=0[/tex]

Divide whole equation by 4

[tex]x^2-3x+1=0[/tex]

Apply quadratic formula to solve for x

[tex]x=\frac{-b+-\sqrt{b^2-4ac}}{2a}[/tex]

the value of a=1, b=-3 and c=1

[tex]x=\frac{-(-3)+-\sqrt{(-3)^2-4(1)(1)}}{2(1)}[/tex]

[tex]x=\frac{3+-\sqrt{5}}{2}[/tex]

[tex]x=\frac{-\sqrt{5}+3}{2}[/tex] and [tex]x=\frac{\sqrt{5}+3}{2}[/tex]