work out the length of ag in the cuboid below. give your answer to 2dp

Answer:
126.58 cm
Step-by-step explanation:
ΔACD (right triangle at D):
AC² = AD² + CD²
= 33² + 21²
= 1530
AC = √1530 cm
ΔACG (right triangle at C):
[tex]cos72^o=\frac{AC}{AG}[/tex]
[tex]AG=\frac{AC}{cos72^o}[/tex]
[tex]=\frac{\sqrt{1530} }{0.309}[/tex]
[tex]=126.58\ cm[/tex]