Respuesta :

check the picture below

so... it looks more or less like so
now, notice the "p" distance, bear in mind that, if the parabola opens downwards, "p" is a negative unit, so, in this case -4

thus  

[tex]\bf \textit{parabola vertex form with focus point distance}\\\\ \begin{array}{llll} (y-{{ k}})^2=4{{ p}}(x-{{ h}}) \\\\ \boxed{(x-{{ h}})^2=4{{ p}}(y-{{ k}})} \\ \end{array} \qquad \begin{array}{llll} vertex\ ({{ h}},{{ k}})\\\\ {{ p}}=\textit{distance from vertex to }\\ \qquad \textit{ focus or directrix} \end{array}[/tex]

[tex]\bf -------------------------------\\\\ (x-{{ h}})^2=4{{ p}}(y-{{ k}})\quad \begin{cases} h=0\\ k=0\\ p=-4 \end{cases}\implies (x-0)^2=4(-4)(y-0) \\\\\\ x^2=-16y\implies \cfrac{x^2}{-16}=y\implies -\cfrac{1}{16}x^2=y[/tex]
Ver imagen jdoe0001