The first three steps in determining the solution set of the system of equations algebraically are shown. y = x2 − x − 3 y = −3x + 5 What are the solutions of this system of equations? (−2, −1) and (4, 17) (−2, 11) and (4, −7) (2, −1) and (−4, 17) (2, 11) and (−4, −7)

Respuesta :

[tex]\begin{cases}y=x^2-x-3\\y=-3x+5\end{cases}\\\\\\x^2-x-3=-3x+5\\\\x^2-x-3+3x-5=0\\\\x^2+2x-8=0\\\\(x^2+2x+1)-9=0\\\\(x+1)^2-3^2=0\\\\(x+1+3)(x+1-3)=0\\\\(x+4)(x-2)=0\\\\\\x+4=0\qquad\vee\qquad x-2=0\\\\\boxed{x=-4\qquad\vee\qquad x=2}\\\\\\y=-3x+5\\\\y=-3(-4)+5\qquad\vee\qquad y=-3(2)+5\\\\y=12+5\qquad\vee\qquad y=-6+5\\\\\boxed{y=17\qquad\vee\qquad y=-1}[/tex]

So answer is C:

[tex]$\begin{cases}x=-4\\y=17\end{cases}\qquad\vee\qquad\begin{cases}x=2\\y=-1\end{cases}$[/tex]

Answer: option C. or (2, −1) and (−4, 17)

Step-by-step explanation:i got it right on edge also have a bless day