contestada

A circle has a central angle measuring 7pi/6 radians that intersects an arc of length 18 cm. What is the length of the radius of the circle? Round your answer to the nearest tenth. Use 3.14 for pi.
3.7 cm
4.9 cm
14.3 cm
15.4 cm

Respuesta :

Answer:-[tex]\text{The length of the radius of the circle=4.91 cm}[/tex]


Explanation:-

[tex]\text{Let r be the radius of the circle.}[/tex]

[tex]\text{Here, central angle}\theta=\frac{7\pi}{6}\\\text{Arc length\ l=18\ cm}[/tex]

[tex]\text{We know that }[/tex]

[tex]l=r\theta\\\Rightarrow18=r(\frac{7\pi}{6})\\\\\Rightarrow\ r=\frac{18\times6}{7\pi}\\\\\Rightarrow\ r=\frac{108}{7\times3.14}\\\\\Rightarrow\ r=\frac{108}{21.98}\\\\\Rightarrow\ r=4.91\approx4.9\ cm\\\text{Therefore, the length of the radius of the circle=4.91 cm}[/tex]


The radius of this circle is 4.9cm

To solve this problem, we need to first of all convert the angle from radians to degrees.

data;

  • length of an arc = 18cm
  • angle = 7/6π rads
  • π= 3.14

[tex]7\pi /6 rads= 210^0[/tex]

Length of an Arc

The formula of length of an arc is given as

[tex]l_a_r_c=\frac{\theta}{360}*2\pi r[/tex]

Let's substitute the values and solve

[tex]18=\frac{210}{360}*2\pi r\\ 18=3.663r\\r=\frac{18}{3.663}\\r= 4.9cm[/tex]

From the calculations above, the radius of this circle is 4.9cm

Learn more on length of an arc here;

https://brainly.com/question/2005046