Respuesta :
Answer:
The required probability is [tex]P(A/B')=\frac{3}{7}[/tex]
Step-by-step explanation:
Given : [tex]\text{P(A and }B')=\frac{1}{6}[/tex] and [tex]P(B')=\frac{7}{18}[/tex]
To find : What is P(A/B') ?
Solution :
The conditional probability states that,
[tex]P(A/B)=\frac{PA\cap B}{P(B)}[/tex]
According to given situations,
The conditional probability is
[tex]P(A/B')=\frac{P(A\cap B')}{P(B')}[/tex]
Substitute [tex]P(A\cap B')=\frac{1}{6}[/tex] and [tex]P(B')=\frac{7}{18}[/tex]
[tex]P(A/B')=\frac{\frac{1}{6}}{\frac{7}{18}}[/tex]
[tex]P(A/B')=\frac{1\times 18}{6\times 7}[/tex]
[tex]P(A/B')=\frac{3}{7}[/tex]
Therefore, The required probability is [tex]P(A/B')=\frac{3}{7}[/tex]