Respuesta :

the answer is 3/7 APEX

Answer:

The required probability is [tex]P(A/B')=\frac{3}{7}[/tex]  

Step-by-step explanation:

Given : [tex]\text{P(A and }B')=\frac{1}{6}[/tex] and [tex]P(B')=\frac{7}{18}[/tex]  

To find : What is  P(A/B') ?

Solution :

The conditional probability states that,

[tex]P(A/B)=\frac{PA\cap B}{P(B)}[/tex]

According to given situations,

The conditional probability is

[tex]P(A/B')=\frac{P(A\cap B')}{P(B')}[/tex]

Substitute [tex]P(A\cap B')=\frac{1}{6}[/tex] and [tex]P(B')=\frac{7}{18}[/tex]

[tex]P(A/B')=\frac{\frac{1}{6}}{\frac{7}{18}}[/tex]

[tex]P(A/B')=\frac{1\times 18}{6\times 7}[/tex]    

[tex]P(A/B')=\frac{3}{7}[/tex]  

Therefore, The required probability is [tex]P(A/B')=\frac{3}{7}[/tex]