Respuesta :
Answer:
All four roots are complex.
Step-by-step explanation:
Given: [tex]7+5x^4-3x^2[/tex]
First we write as standard form.
[tex]5x^4-3x^2+7[/tex]
Let x² be y
For finding zeros to set the equation 0
[tex]5y^2-3y+7=0[/tex]
Using quadratic formula:
[tex]y=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
a=5, b=-3 and c=7
[tex]y=\dfrac{3\pm\sqrt{9-140}}{10}[/tex]
[tex]y=\dfrac{3\pm\sqrt{131}i}{10}[/tex]
[tex]x^2=\dfrac{3\pm\sqrt{131}i}{10}[/tex]
Square root of complex number is complex.
Hence, All four roots are complex.
The given polynomial is a four-degree polynomial. The given polynomial has four roots which are all complex.
Given:
The polynomial is [tex]7+5x^4-3x^2[/tex]
Let [tex]y=x^2[/tex]. Arrange the polynomial as,
[tex]7+5x^4-3x^2=5x^4-3x^2+7\\=5y^2-3y+7[/tex]
Solve the above quadratic polynomial using the quadratic formula,
[tex]y=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}\\=\dfrac{3\pm\sqrt{(-3)^2-4\times 5\times7}}{2\times5}\\=\dfrac{3\pm\sqrt{-131}}{10}\\=\dfrac{3\pm i\sqrt{131}}{10}[/tex]
So, the value of x will be,
[tex]y=x^2=\dfrac{3\pm i\sqrt{131}}{10}\\x=\pm\sqrt {\dfrac{3\pm i\sqrt{131}}{10}}[/tex]
The value of x will be complex number.
Therefore, the given polynomial has four roots which are all complex.
For more details, refer to the link:
https://brainly.com/question/2557258