Respuesta :
we know that
The quadratic formula is equal to
[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}}{2a}[/tex]
in this problem we have
[tex]4x^{2}+2x-1=0[/tex]
so
[tex]a=4\\b=2\\c=-1[/tex]
substitute the values in the formula
[tex]x=\frac{-2(+/-)\sqrt{2^{2}-4*(4)*(-1)}}{2*(4)}[/tex]
[tex]x=\frac{-2(+/-)\sqrt{4+16}}{8}[/tex]
[tex]x=\frac{-2(+/-)\sqrt{20}}{8}[/tex]
The correct substitution to the equation 4x² + 2x - 1 = 0 is [tex]x=\frac{-2\pm\sqrt{2^2-4(4)(-1)} }{2(4)}[/tex]
What is an equation?
An equation is an expression that shows the relationship between two or more numbers and variables.
Given the quadratic equation:
ax² + bx + c = 0
The solution is at:
[tex]x=\frac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex]
Given the equation:
4x² + 2x - 1 = 0
a = 4, b = 2, c = -1
Hence:
[tex]x=\frac{-2\pm\sqrt{2^2-4(4)(-1)} }{2(4)}[/tex]
The correct substitution to the equation 4x² + 2x - 1 = 0 is [tex]x=\frac{-2\pm\sqrt{2^2-4(4)(-1)} }{2(4)}[/tex]
Find out more on equation at: https://brainly.com/question/2972832