Respuesta :
f(1)=0,f(5)=120
{average rate of change of f(x) over the interval [1, 5] } = [f(5)-f(1)]/(5-1)=120/4=30
{average rate of change of f(x) over the interval [1, 5] } = [f(5)-f(1)]/(5-1)=120/4=30
Answer:
The average rate of change in the interval [1,5] is 30.
Step-by-step explanation:
The function is given by [tex]f(x)=x^3-x[/tex]
Then, we have that,
[tex]f(5)=5^3-5\\\\f(5)=125-5\\\\f(5)=120[/tex]
Also, we have,
[tex]f(1)=1^3-1\\\\f(1)=1-1\\\\f(1)=0[/tex]
So, the average rate of change over the interval [1,5] will be,
[tex]Rate=\dfrac{f(5)-f(1)}{5-1}\\\\Rate=\dfrac{120-0}{4}\\\\Rate=\dfrac{120}{4}\\\\Rate=30[/tex]