A sphere fits snugly inside a cube with 6-in. edges. what is the approximate volume of the space between the sphere and cube to the nearest whole number?

Respuesta :

mergl
Volume of cube=s^3
s=6
V of cube=216
Volume of sphere=(4/3)pi(r^3)
r=3, if diameter=6
(4/3)(pi)(3^3)
V of sphere=36pi
Vcube-Vsphere=102.9026645
=103

Answer:

103 cube inches

Step-by-step explanation:

Since sphere fits snugly  inside a cube therefore diameter of sphere will be equal to side of the cube [ which is given to be 6 inches ]

diameter = 6 inches

radius = [tex]\frac{diameter }{2}[/tex]

            = [tex]\frac{6 }{2}[/tex]

             = 3 inches

Volume of the sphere is given by [tex]\frac{4}{3}\pi r^3[/tex]

           here r =3 inches

therefore volume is=  [tex]\frac{4}{3}\pi 3^3[/tex]

                             = 36 pi

                              = 36 ( 3.142)

                              = 113.097 cube inches

Volume of Cube = side x side xside =   6x6x6 = 216 cube inches

Volume of space between sphere and cube = 216 - 113.097= 102.9  cube inches , nearest whole number is 103 cube inches