Totaled
contestada

Which equation has the solutions x=1+- square root of 5
A. x2 + 2x + 4 = 0
B. x2 – 2x + 4 = 0
C. x2 + 2x – 4 = 0
D. x2 – 2x – 4 = 0

Which equation has the solutions x1 square root of 5 A x2 2x 4 0 B x2 2x 4 0 C x2 2x 4 0 D x2 2x 4 0 class=

Respuesta :

Abira
x2 – 2x – 4 = 0 is the right option.

Answer:

[tex]x = 1\pm \sqrt{5}[/tex]

Step-by-step explanation:

Equation: [tex]ax^2+bx+c=0[/tex] --1

Quadratic formula : [tex]x = \frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

Now Solve the given option using this formula

A)[tex]x^2 + 2x + 4 = 0[/tex]

On comparing with 1

a = 1 , b = 2 , c= 4

So, [tex]x = \frac{-2\pm \sqrt{2^2-4(1)(4)}}{2(1)}[/tex]

[tex]x = \frac{-2\pm \sqrt{-12}}{2}[/tex]

B)[tex]x^2 - 2x + 4 = 0[/tex]

On comparing with 1

a = 1 , b = -2 , c= 4

So, [tex]x = \frac{2\pm \sqrt{(-2)^2-4(1)(4)}}{2(1)}[/tex]

[tex]x = \frac{2\pm \sqrt{-12}}{2}[/tex]

C)[tex]x^2 + 2x - 4 = 0[/tex]

On comparing with 1

a = 1 , b = 2 , c=- 4

So, [tex]x = \frac{-2\pm \sqrt{2^2-4(1)(-4)}}{2(1)}[/tex]

[tex]x = \frac{-2\pm \sqrt{20}}{2}[/tex]

[tex]x = \frac{-2\pm 2\sqrt{5}}{2}[/tex]

[tex]x =-1\pm \sqrt{5}[/tex]

D)[tex]x^2 - 2x - 4 = 0[/tex]

On comparing with 1

a = 1 , b = -2 , c= -4

So, [tex]x = \frac{2\pm \sqrt{(-2)^2-4(1)(-4)}}{2(1)}[/tex]

[tex]x = \frac{2\pm \sqrt{20}}{2}[/tex]

[tex]x = \frac{2\pm 2\sqrt{5}}{2}[/tex]

[tex]x = 1\pm \sqrt{5}[/tex]

Hence Option D is correct.

[tex]x^2 - 2x - 4 = 0[/tex] has a solution [tex]x = 1\pm \sqrt{5}[/tex]