Respuesta :
f(x) = (x - 7)/3.
For inverse function, switch the x and y values and then solve for y.
y = (x - 7)/3 ..... this is still the original function
x = (y - 7)/3 ...... I switched the x and y
3x = y - 7
y = 3x + 7 .... this is the inverse
f⁻¹(x) = 3x + 7
f⁻¹(4) = 3(4) + 7 = 19 ... 19 is your final answer!
19
Hope this helps :)
For inverse function, switch the x and y values and then solve for y.
y = (x - 7)/3 ..... this is still the original function
x = (y - 7)/3 ...... I switched the x and y
3x = y - 7
y = 3x + 7 .... this is the inverse
f⁻¹(x) = 3x + 7
f⁻¹(4) = 3(4) + 7 = 19 ... 19 is your final answer!
19
Hope this helps :)
Solution:
f(x)=[tex]\frac{x-7}{3}[/tex]
Or , y = [tex]\frac{x-7}{3}[/tex]
→ 3 y = x-7
→ x = 3 y +7-----(1)
Now replace x by y in equation 1 ,to get the inverse of f(x)
[tex]f^{-1}(x)= 3 x + 7[/tex]
[tex]f^{-1}(4)= 3 \times 4 +7=19[/tex]