Respuesta :
h=-16t^2+56t+1, the airplane is shot up from a platform 1 foot above the ground, so
1= - 16t^2+56t+1, we solve this equation
(- 16t+56)t=0, (- 16t+56)=0 or t=o, - 16t+56=0, implies t =3.5s
so the answer is C)3.5 seconds
1= - 16t^2+56t+1, we solve this equation
(- 16t+56)t=0, (- 16t+56)=0 or t=o, - 16t+56=0, implies t =3.5s
so the answer is C)3.5 seconds
check the picture below
so [tex]\bf \textit{vertex of a parabola}\\ \quad \\ \begin{array}{lccclll} h=&-16t^2&+56t&+1\\ &\uparrow &\uparrow &\uparrow \\ &a&b&c \end{array}\qquad \left(-\cfrac{{{ b}}}{2{{ a}}}\quad ,\quad {{ c}}-\cfrac{{{ b}}^2}{4{{ a}}}\right)[/tex]
so it reaches a maximum height of [tex]\bf {{ c}}-\cfrac{{{ b}}^2}{4{{ a}}} \quad feet[/tex] and that happens at [tex]\bf -\cfrac{{{ b}}}{2{{ a}}} \quad seconds[/tex]
so [tex]\bf \textit{vertex of a parabola}\\ \quad \\ \begin{array}{lccclll} h=&-16t^2&+56t&+1\\ &\uparrow &\uparrow &\uparrow \\ &a&b&c \end{array}\qquad \left(-\cfrac{{{ b}}}{2{{ a}}}\quad ,\quad {{ c}}-\cfrac{{{ b}}^2}{4{{ a}}}\right)[/tex]
so it reaches a maximum height of [tex]\bf {{ c}}-\cfrac{{{ b}}^2}{4{{ a}}} \quad feet[/tex] and that happens at [tex]\bf -\cfrac{{{ b}}}{2{{ a}}} \quad seconds[/tex]
