Respuesta :
you just have to change the log form to exponential form.
log(b) x = y is the same and saying b^y = x
so 6^2.1 = x
x = 43.06
log(b) x = y is the same and saying b^y = x
so 6^2.1 = x
x = 43.06
Answer:
The solution of the equation is 43.06.
Step-by-step explanation:
Consider the provided equation:
[tex]log_6x = 2.1[/tex]
Consider the left side and apply the rule: [tex]\quad \:a=\log _b\left(b^a\right)[/tex]
[tex]2.1=\log _6\left(6^{2.1}\right)[/tex]
Substitute the value of 2.1 in provided equation.
[tex]\log _6\left(x\right)=\log _6\left(6^{2.1}\right)[/tex]
[tex]\mathrm{For\:}\log _6\left(x\right)=\log _6\left(6^{2.1}\right)\mathrm{,\:\quad solve\:}x=6^{2.1}[/tex]
[tex]x=6^{2.1}[/tex]
[tex]x=43.06}[/tex]
Hence, the solution of the equation is 43.06.