Respuesta :

you just have to change the log form to exponential form.

log(b) x = y is the same and saying b^y = x

so 6^2.1 = x

x = 43.06

Answer:

The solution of the equation is 43.06.  

Step-by-step explanation:

Consider the provided equation:

[tex]log_6x = 2.1[/tex]

Consider the left side and apply the rule: [tex]\quad \:a=\log _b\left(b^a\right)[/tex]

[tex]2.1=\log _6\left(6^{2.1}\right)[/tex]

Substitute the value of 2.1 in provided equation.

[tex]\log _6\left(x\right)=\log _6\left(6^{2.1}\right)[/tex]

[tex]\mathrm{For\:}\log _6\left(x\right)=\log _6\left(6^{2.1}\right)\mathrm{,\:\quad solve\:}x=6^{2.1}[/tex]

[tex]x=6^{2.1}[/tex]

[tex]x=43.06}[/tex]

Hence, the solution of the equation is 43.06.