Respuesta :

Well, to get from M to E you subtract two from the x, and 4 from the y.  So go the other way, and add two to the x and 4 to the y.  You get (6, 14)
This is because each endpoint is equidistant from the midpoint.

Answer:

Other point F ( 6 ,14).

Step-by-step explanation:

Given  : The midpoint of EF is M(4, 10). One endpoint is E(2, 6).

To find : Find the coordinates of the other endpoint F.

Solution : We have given  that

Line EF have mid point M ( 4 ,10)

One end point E ( 2 ,6) .

Let other point F ( [tex]x_{2} ,y_{2}[/tex])

Mid point segment formula ( M) : [tex](\frac{x_{1}+x_{2}}{2} , \frac{y_{1}+y_{2}}{2})[/tex].

[tex]\frac{x_{1}+x_{2}}{2}[/tex] = 4

Plug [tex]x_{1}[/tex] = 2.

[tex]\frac{2+x_{2}}{2}[/tex] = 4

On multiplying both side by 2

2 + [tex]x_{2}[/tex]  = 8

[tex]x_{2}[/tex] = 8- 2

[tex]x_{2}[/tex]  =  6.

[tex]\frac{y_{1}+y_{2}}{2}[/tex] = 10.

Plug [tex]y_{1}[/tex] = 6.

[tex]\frac{6+y_{2}}{2}[/tex] = 10.

On multiplying both side by 2

6 +[tex]y_{2}[/tex]  = 20

[tex]y_{2}[/tex] = 20 - 6

[tex]y_{2}[/tex] = 14.

Therefore, Other point F ( 6 ,14).