Respuesta :

not sure i know what equivalent but i know the answer which is y^12/5.

Answer:

An equivalent expression to the given expression  [tex]\frac{9x^5y^{16}}{45x^5y^4}[/tex] is [tex]\frac{y^{12}}{5}[/tex]

Step-by-step explanation:

Given :  Expression [tex]\frac{9x^5y^{16}}{45x^5y^4}[/tex]

We have to find an equivalent expression to the given expression  [tex]\frac{9x^5y^{16}}{45x^5y^4}[/tex]

Consider the given expression  [tex]\frac{9x^5y^{16}}{45x^5y^4}[/tex]

Cancel the common factor 9, we have,

[tex]=\frac{x^5y^{16}}{5x^5y^4}[/tex]

Cancel the common factor [tex]x^5[/tex], we have,

[tex]=\frac{y^{16}}{5y^4}[/tex]

[tex]\mathrm{Apply\:exponent\:rule}:\quad \frac{x^a}{x^b}\:=\:x^{a-b}[/tex]

We have, [tex]\frac{y^{16}}{y^4}=y^{16-4}=y^{12}[/tex]

Thus, we get,

[tex]=\frac{y^{12}}{5}[/tex]

Thus, An equivalent expression to the given expression  [tex]\frac{9x^5y^{16}}{45x^5y^4}[/tex] is [tex]\frac{y^{12}}{5}[/tex]