Respuesta :
not sure i know what equivalent but i know the answer which is y^12/5.
Answer:
An equivalent expression to the given expression [tex]\frac{9x^5y^{16}}{45x^5y^4}[/tex] is [tex]\frac{y^{12}}{5}[/tex]
Step-by-step explanation:
Given : Expression [tex]\frac{9x^5y^{16}}{45x^5y^4}[/tex]
We have to find an equivalent expression to the given expression [tex]\frac{9x^5y^{16}}{45x^5y^4}[/tex]
Consider the given expression [tex]\frac{9x^5y^{16}}{45x^5y^4}[/tex]
Cancel the common factor 9, we have,
[tex]=\frac{x^5y^{16}}{5x^5y^4}[/tex]
Cancel the common factor [tex]x^5[/tex], we have,
[tex]=\frac{y^{16}}{5y^4}[/tex]
[tex]\mathrm{Apply\:exponent\:rule}:\quad \frac{x^a}{x^b}\:=\:x^{a-b}[/tex]
We have, [tex]\frac{y^{16}}{y^4}=y^{16-4}=y^{12}[/tex]
Thus, we get,
[tex]=\frac{y^{12}}{5}[/tex]
Thus, An equivalent expression to the given expression [tex]\frac{9x^5y^{16}}{45x^5y^4}[/tex] is [tex]\frac{y^{12}}{5}[/tex]