Respuesta :
Answer:
[tex]12a^2 + 60a -8-(16a^2 - 32a + 9)=-4a^2+92a-17[/tex]
Step-by-step explanation:
Given : Polynomial [tex]16a^2 - 32a + 9[/tex] and [tex]12a^2 + 60a -8[/tex]
We have to subtract [tex]16a^2 - 32a + 9[/tex] from [tex]12a^2 + 60a -8[/tex]
Consider the given polynomials,
We have to subtract [tex]16a^2 - 32a + 9[/tex] from [tex]12a^2 + 60a -8[/tex]
When we write a from b this means b - a
So, for given polynomial written as ,
[tex]12a^2 + 60a -8-(16a^2 - 32a + 9)[/tex]
Apply distribution, we have,
[tex]-(16a^2 - 32a + 9)=-\left(16a^2\right)-\left(-32a\right)-\left(9\right)[/tex]
Apply plus - minus rule ,[tex]-\left(-a\right)=a,\:\:\:-\left(a\right)=-a[/tex] we have,
[tex]=-16a^2+32a-9[/tex]
thus, [tex]12a^2 + 60a -8-(16a^2 - 32a + 9)[/tex] becomes,
[tex]=12a^2+60a-8-16a^2+32a-9[/tex]
Adding similar terms, we have,
[tex]=-4a^2+92a-17[/tex]
Thus, [tex]12a^2 + 60a -8-(16a^2 - 32a + 9)=-4a^2+92a-17[/tex]