Respuesta :

12 a^2 + 60 a - 8 
- (16 a^2 - 32 a + 9) 

= -4 a^2 + 92 a - 17

Answer:

[tex]12a^2 + 60a -8-(16a^2 - 32a + 9)=-4a^2+92a-17[/tex]            

Step-by-step explanation:

Given : Polynomial [tex]16a^2 - 32a + 9[/tex] and [tex]12a^2 + 60a -8[/tex]

We have to subtract [tex]16a^2 - 32a + 9[/tex] from  [tex]12a^2 + 60a -8[/tex]

Consider the given polynomials,

We have to subtract  [tex]16a^2 - 32a + 9[/tex] from  [tex]12a^2 + 60a -8[/tex]

When we write a from b this means  b - a

So, for given polynomial written as ,

[tex]12a^2 + 60a -8-(16a^2 - 32a + 9)[/tex]

Apply distribution, we have,

[tex]-(16a^2 - 32a + 9)=-\left(16a^2\right)-\left(-32a\right)-\left(9\right)[/tex]

Apply plus - minus rule ,[tex]-\left(-a\right)=a,\:\:\:-\left(a\right)=-a[/tex] we have,

[tex]=-16a^2+32a-9[/tex]

thus, [tex]12a^2 + 60a -8-(16a^2 - 32a + 9)[/tex] becomes,

[tex]=12a^2+60a-8-16a^2+32a-9[/tex]

Adding similar terms, we have,

[tex]=-4a^2+92a-17[/tex]

Thus, [tex]12a^2 + 60a -8-(16a^2 - 32a + 9)=-4a^2+92a-17[/tex]