Respuesta :

remember
√(ab)=(√a)(√b)
and
√(a/b)=(√a)/(√b)

divide both sides by 16p

q²=25/(16p)
sqrt both sides
remember positive and negative roots
[tex]q= \frac{+/-5}{4 \sqrt{p} } [/tex]
rationalize denom by multiplying by (√p)/(√p)
[tex]q= \frac{+/-5\sqrt{q}}{4 p } [/tex]

2nd option is correct

Answer:

Option 2 is correct    

Step-by-step explanation:

Given the equation

[tex]16pq^2=25[/tex]

we have to solve the above equation for q

[tex]16pq^2=25[/tex]

Divide by 16p both sides, we get

[tex]\frac{16pq^2}{16p}=\frac{25}{16p}[/tex]

[tex]q^2=\frac{25}{16p}[/tex]

Taking square root on both sides

[tex]q=\pm\frac{\sqrt{25}}{\sqrt{16p}}=\pm\frac{5}{4\sqrt p}[/tex]

Rationalizing, we get

[tex]q=\pm\frac{5}{4\sqrt p}\times \frac{\sqrt p}{\sqrt p}=\pm\frac{5\sqrtp}{4p}[/tex]

Option 2 is correct