Respuesta :
remember
√(ab)=(√a)(√b)
and
√(a/b)=(√a)/(√b)
divide both sides by 16p
q²=25/(16p)
sqrt both sides
remember positive and negative roots
[tex]q= \frac{+/-5}{4 \sqrt{p} } [/tex]
rationalize denom by multiplying by (√p)/(√p)
[tex]q= \frac{+/-5\sqrt{q}}{4 p } [/tex]
2nd option is correct
√(ab)=(√a)(√b)
and
√(a/b)=(√a)/(√b)
divide both sides by 16p
q²=25/(16p)
sqrt both sides
remember positive and negative roots
[tex]q= \frac{+/-5}{4 \sqrt{p} } [/tex]
rationalize denom by multiplying by (√p)/(√p)
[tex]q= \frac{+/-5\sqrt{q}}{4 p } [/tex]
2nd option is correct
Answer:
Option 2 is correct
Step-by-step explanation:
Given the equation
[tex]16pq^2=25[/tex]
we have to solve the above equation for q
[tex]16pq^2=25[/tex]
Divide by 16p both sides, we get
[tex]\frac{16pq^2}{16p}=\frac{25}{16p}[/tex]
[tex]q^2=\frac{25}{16p}[/tex]
Taking square root on both sides
[tex]q=\pm\frac{\sqrt{25}}{\sqrt{16p}}=\pm\frac{5}{4\sqrt p}[/tex]
Rationalizing, we get
[tex]q=\pm\frac{5}{4\sqrt p}\times \frac{\sqrt p}{\sqrt p}=\pm\frac{5\sqrtp}{4p}[/tex]
Option 2 is correct