Respuesta :
[tex]\bf f(x)=8\sqrt{x}\iff f(x)=8x^{\frac{1}{2}}\qquad
\begin{array}{ccllll}
[4&,&9]\\
a&&b
\end{array}\\\\
-----------------------------\\\\[/tex]
[tex]\bf \cfrac{dy}{dx}=8\cdot \cfrac{1}{2}x^{-\frac{1}{2}}\implies \cfrac{dy}{dx}=\cfrac{4}{\sqrt{x}}\\\\ -----------------------------\\\\ \textit{now, the mean value theorem says}\qquad f'(c)=\cfrac{f(b)-f(a)}{b-a}\\\\ -----------------------------\\\\ thus\qquad \cfrac{4}{\sqrt{c}}=\cfrac{f(9)-f(4)}{9-4}\implies \cfrac{4}{\sqrt{c}}=\cfrac{24-16}{5}\implies \cfrac{4}{\sqrt{c}}=\cfrac{8}{5} \\\\\\ \cfrac{5}{2}=\sqrt{c}\implies \boxed{\cfrac{25}{4}=c}[/tex]
[tex]\bf \cfrac{dy}{dx}=8\cdot \cfrac{1}{2}x^{-\frac{1}{2}}\implies \cfrac{dy}{dx}=\cfrac{4}{\sqrt{x}}\\\\ -----------------------------\\\\ \textit{now, the mean value theorem says}\qquad f'(c)=\cfrac{f(b)-f(a)}{b-a}\\\\ -----------------------------\\\\ thus\qquad \cfrac{4}{\sqrt{c}}=\cfrac{f(9)-f(4)}{9-4}\implies \cfrac{4}{\sqrt{c}}=\cfrac{24-16}{5}\implies \cfrac{4}{\sqrt{c}}=\cfrac{8}{5} \\\\\\ \cfrac{5}{2}=\sqrt{c}\implies \boxed{\cfrac{25}{4}=c}[/tex]
The value(s) of c guaranteed by the Mean Value Theorem for Integrals for the function over the given interval will be 25 / 4.
What is Mean Value Theorem?
The Mean Value Theorem is a continuous function on a closed, bounded interval that has at least one point where it is equal to its average value on the interval.
We have,
f(x) = 8√x and [4, 9]
Now,
Using The Mean Value Theorem,
i.e. f'(c) = [ f(b) - f(a)] / (b - a)
So,
f(x) = 8√x = 8 (x) ¹/² = 8 × (1/2) x ⁻¹/² = 4 / √x
f(x) = 4 / √x
So,
f'(c) = 4 / √c
Now,
For a = 4,
f(x) = 8√x
f(a) = 8 √4 = 8 × 2 = 16
Now,
For b = 9,
f(x) = 8√x
f(b) = 8 √9 = 8 × 3 = 24
So,
Using The Mean Value Theorem,
i.e. f'(c) = [ f(b) - f(a)] / (b - a)
And substituting values ;
we get,
f'(c) = [ 24 - 16 ] / (9 - 4)
4 / √c = 8 / 5
⇒
√c = 5 / 2
⇒
c = 25 /4
Hence we can say that the value(s) of c guaranteed by the Mean Value Theorem for Integrals for the function over the given interval will be 25 / 4.
To learn more about Mean Value Theorem click here,
https://brainly.com/question/1581272
#SPJ2