Respuesta :

[tex] \frac{1}{9}( 3^{x}) = 3 ^ {x-2}[/tex]
So the inverse is
[tex](log _{3} {x}) + 2 [/tex]

[tex]y = \frac{3^{x}}{9}[/tex]
[tex]x = \frac{3^{y}}{9}[/tex] (Interchange the x-values and the y-values)

Now, solve for y.
[tex]9x = 3^{y}[/tex]
[tex]y = log_3 (9x)[/tex]
[tex]y = log_3(9) + log_3(x)[/tex]
[tex]y = 2log_3{3} + log_3(x)[/tex]

[tex]y = \frac{ln(x) + 2ln(3)}{ln(3)}[/tex]