Respuesta :
ab=750 and a=b-5, using this value of a in the original equation gives you:
(b-5)b=750
b^2-5b=750
b^2-5b-750=0
b^2-30b+25b-750=0
b(b-30)+25(b-30)=0
(b+25)(b-30)=0
b=30
(b-5)b=750
b^2-5b=750
b^2-5b-750=0
b^2-30b+25b-750=0
b(b-30)+25(b-30)=0
(b+25)(b-30)=0
b=30
Answer:
c. 30
Step-by-step explanation:
Here x represents the greater number or second number,
Since, The smaller number is 5 less than the greater number,
Thus, the smaller number = (x - 5)
Given,
The product of x and (x-5) is 750
⇒ x(x-5) = 750
[tex]x^2-5x=750[/tex] ( By associative property )
[tex]x^2-5x-750=0[/tex] ( By subtracting 750 on both sides )
[tex]x^2-(30-25)x-750=0[/tex] ( By middle term splitting )
[tex]x^2-30x+25x-750=0[/tex]
[tex]x(x-30)+25(x-30)=0[/tex]
[tex](x-30)(x+25)=0[/tex]
[tex]\implies x = 30\text{ or } x = -25[/tex]
But, both numbers are positive
⇒ x can not be negative in the given question.
Hence, the value of greater number is 30.
Option C is correct.