Which exponential function does not have an x-intercept?
f(x) = 5x – 5 – 1
f(x) = 5x – 5 – 5
f(x) = -5x – 5 + 5
f(x) = -5x – 5 – 1

Respuesta :

   f(x) = -5x – 5 + 5    Hope this helps!

Answer:

The correct option is 4.

Step-by-step explanation:

Find the x-intercept of each function.

1. [tex]f(x)=5^{(x-5)}-1[/tex]

Substitute f(x)=0, to find the x-intercept.

[tex]0=5^{(x-5)}-1[/tex]

[tex]1=5^{(x-5)}[/tex]

[tex]5^0=5^{(x-5)}[/tex]

On comparing the powers, we get

[tex]0=x-5[/tex]

[tex]x=5[/tex]

The x-intercept of this function is 5.

2. [tex]f(x)=5^{(x-5)}-5[/tex]

Substitute f(x)=0, to find the x-intercept.

[tex]0=5^{(x-5)}-5[/tex]

[tex]5=5^{(x-5)}[/tex]

[tex]5^1=5^{(x-5)}[/tex]

On comparing the powers, we get

[tex]1=x-5[/tex]

[tex]x=6[/tex]

The x-intercept of this function is 6.

3. [tex]f(x)=-5^{(x-5)}+5[/tex]

Substitute f(x)=0, to find the x-intercept.

[tex]0=-5^{(x-5)}+5[/tex]

[tex]5^{(x-5)}=5[/tex]

[tex]5^{(x-5)}=5^1[/tex]

On comparing the powers, we get

[tex]x-5=1[/tex]

[tex]x=6[/tex]

The x-intercept of this function is 6.

4. [tex]f(x)=-5^{(x-5)}-1[/tex]

Substitute f(x)=0, to find the x-intercept.

[tex]0=-5^{(x-5)}-1[/tex]

[tex]1=-5^{(x-5)}[/tex]

[tex]-1=5^{(x-5)}[/tex]

This statement is not true for any value of x. Therefore this function has not x-intercept.

Option 4 is correct.