Respuesta :
Keywords
system of equations, linear equation, elimination method
we have
[tex]\frac{1}{3}x+ \frac{1}{4}y=1[/tex]
Multiply by [tex]12[/tex] both sides
[tex]4x+3y=12[/tex] -----> linear equation A
[tex]2x-3y=-30[/tex] -----> linear equation B
Applying the elimination method for solve the system of equations
Adds equation A and equation B
[tex]4x+3y=12 \\2x-3y=-30\\-------- \\4x+2x=12-30 \\6x=-18 \\x=-3[/tex]
Find the value of y
[tex]4(-3)+3y=12[/tex]
[tex]3y=12+12[/tex]
[tex]y=8[/tex]
therefore
the answer is the option D
[tex]8[/tex]
Their is the system of linear equations [tex]\frac{1}{3} x+\frac{1}{4} y=1[/tex] and [tex]2x-3y=-30[/tex].
The solution of the given system of equation is 8. The correct answer is option D.
Given equations:
[tex]\frac{1}{3} x+\frac{1}{4} y=1[/tex]
[tex]2x-3y=-30[/tex]
Let
[tex]\frac{1}{3} x+\frac{1}{4} y=1[/tex] ...........(i)
[tex]2x-3y=-30[/tex] ..........(ii)
Look for terms that can be eliminated. The equations do not have any x or y terms with the same coefficients.
Multiply the equation (i) by 12 so they do have the same coefficient.
[tex]12(\frac{1}{3} x+\frac{1}{4} y=1)[/tex]
[tex]4x+3y=12[/tex] .............(iii)
Adding equation (ii) and equation (iii)
[tex]2x-3y=-30\\4x+3y=12[/tex]
------------------------
[tex]6x=-18\\x=\frac{-18}{6}\\x=-3[/tex]
Substitute x = -3 into one of the original equations to find y.
[tex]2(-3)-3y=-30\\-6-3y=-30\\-3y=-30+6\\y=\frac{-24}{-3} \\y=8[/tex]
Therefore, the answer is the option D
For more information:-
https://brainly.com/question/12735283