Respuesta :
The work is equivalent to the dot product of the two vectors.
[tex]W=\mathbf F\cdot\mathbf r=\langle2,-1,-1\rangle\cdot\langle3,2,-5\rangle=6-2+5=9[/tex]
[tex]W=\mathbf F\cdot\mathbf r=\langle2,-1,-1\rangle\cdot\langle3,2,-5\rangle=6-2+5=9[/tex]
Answer:
[tex]W=9[/tex]
Step-by-step explanation:
applying the following formula
[tex]W=r.f[/tex]
here the dot indicates the dot product
then
[tex]W=(3i+2j-5k).(2i-j-k)[/tex]
taking dot product
[tex]W=3.2+2.(-1)+(-5).(-1)[/tex]
[tex]W=6-2+5[/tex]
[tex]W=9[/tex]