Respuesta :
With Tiger Adding Fractions; {(9/(x^2-9x))-(6/(x^2-81))} Comparing Fractions; ... Theory : A difference of two perfect squares, A2 - B2 can be factored into (A+B) • (A-B) ... To calculate equivalent fraction , multiply the Numerator of each fraction, ... hope this helped i guess
assuming you mean [tex] \frac{9}{x^2-9}- \frac{6}{x^2-81} [/tex]
we need to make denomeoator the same
multiply left fraction by [tex] \frac{x^2-81}{x^2-81} [/tex] and right fraction by [tex] \frac{x^2-9}{x^2-9} [/tex]
we get
[tex] \frac{9(x^2-81)}{(x^2-81)(x^2-9)}- \frac{6(x^2-9)}{(x^2-9)(x^2-81)} [/tex]
add
[tex] \frac{9(x^2-81)-6(x^2-9)}{(x^2-81)(x^2-9)} [/tex]
expand top
[tex] \frac{9x^2-729-6x^2+54}{(x^2-81)(x^2-9)} [/tex]
simplfiy
[tex] \frac{3x^2-675}{(x^2-81)(x^2-9)} [/tex]
we need to make denomeoator the same
multiply left fraction by [tex] \frac{x^2-81}{x^2-81} [/tex] and right fraction by [tex] \frac{x^2-9}{x^2-9} [/tex]
we get
[tex] \frac{9(x^2-81)}{(x^2-81)(x^2-9)}- \frac{6(x^2-9)}{(x^2-9)(x^2-81)} [/tex]
add
[tex] \frac{9(x^2-81)-6(x^2-9)}{(x^2-81)(x^2-9)} [/tex]
expand top
[tex] \frac{9x^2-729-6x^2+54}{(x^2-81)(x^2-9)} [/tex]
simplfiy
[tex] \frac{3x^2-675}{(x^2-81)(x^2-9)} [/tex]