Respuesta :
Let [tex]f(x)=x^{2/3}[/tex]. You have [tex]f(125)=(125)^{2/3}=(5^3)^{2/3}=5^2=25[/tex].
Taking the derivative, you get
[tex]f'(x)=\dfrac2{3x^{1/3}}\implies f'(125)=\dfrac2{3(125)^{1/3}}=\dfrac2{3\times5}=\dfrac2{15}[/tex]
The linear approximation to [tex]f(x)[/tex] near [tex]x=125[/tex] is given by
[tex]L(x)=f(125)+f'(125)(x-125)\approx f(x)[/tex]
So the value of [tex](125.07)^{2/3}[/tex] can be estimated as
[tex]L(125.07)=f(125)+f'(125)(125.07-125)[/tex]
[tex]L(125.07)=25+\dfrac2{15}(0.07)=25.009333\ldots[/tex]
Taking the derivative, you get
[tex]f'(x)=\dfrac2{3x^{1/3}}\implies f'(125)=\dfrac2{3(125)^{1/3}}=\dfrac2{3\times5}=\dfrac2{15}[/tex]
The linear approximation to [tex]f(x)[/tex] near [tex]x=125[/tex] is given by
[tex]L(x)=f(125)+f'(125)(x-125)\approx f(x)[/tex]
So the value of [tex](125.07)^{2/3}[/tex] can be estimated as
[tex]L(125.07)=f(125)+f'(125)(125.07-125)[/tex]
[tex]L(125.07)=25+\dfrac2{15}(0.07)=25.009333\ldots[/tex]
The estimated value of the given number is 25.0093.
Given:
The given number is [tex](125.07)^{\frac{2}{3}}[/tex].
To find:
The estimated value of the given number by using the linear approximation formula.
Explanation:
Linear approximation formula:
[tex]f(x)=f(x_0)+f'(x_0)(x-x_0)[/tex]
Let
[tex]f(x)=x^{\frac{2}{3}}[/tex]
For [tex]x_0=125[/tex],
[tex]f(125)=(125)^{\frac{2}{3}}[/tex]
[tex]f(125)=5^2[/tex]
[tex]f(125)=25[/tex]
Differentiate [tex]f(x)[/tex] with respect to [tex]x[/tex].
[tex]f'(x)=\dfrac{2}{3}x^{\frac{2}{3}-1}[/tex]
[tex]f'(x)=\dfrac{2}{3}x^{-\frac{1}{3}}[/tex]
[tex]f'(x)=\dfrac{2}{3x^{\frac{1}{3}}}[/tex]
For [tex]x_0=125[/tex],
[tex]f'(125)=\dfrac{2}{3(125)^{\frac{1}{3}}}[/tex]
[tex]f'(125)=\dfrac{2}{3(5)}[/tex]
[tex]f'(125)=\dfrac{2}{15}[/tex]
Using the linear approximation formula, we get
[tex]f(125.07)=f(125)+f'(125)(125.07-125)[/tex]
[tex](125.07)^{\frac{2}{3}}=25+\dfrac{2}{3}(0.07)[/tex]
[tex](125.07)^{\frac{2}{3}}=25.0093333...[/tex]
[tex](125.07)^{\frac{2}{3}}\approx 25.0093333...[/tex]
Therefore, the estimated value of the given number is 25.0093.
Learn more:
https://brainly.com/question/2193112