Respuesta :

lukyo

•  Expand (2a + b)²:

(2a + b)²

= (2a + b) · (2a + b)


Multiply out the brackets by applying the distributive property of multiplication:

= (2a + b) · 2a + (2a + b) · b

= 2a · 2a + b · 2a + 2a · b + b · b

= 2²a² + 2ab + 2ab + b²


Now, group like terms together, and you get

= 2²a² + 4ab + b²

= 4a² + 4ab + b²    <———    expanded form  (this is the answer).


I hope this helps. =)


Tags:  special product square of a sum algebra