Respuesta :

Hope this helps you!
Ver imagen AbhiGhost

Answer:

[tex](x-2)^2 +(y-4)^2=25[/tex]

Step-by-step explanation:

Since, the diameter of the circle having the end points (-2, 1) and (6, 7),

Thus, by the distance formula,

[tex]\text{Diameter}=\sqrt{(6+2)^2+(7-1)^2}[/tex]

[tex]=\sqrt{8^2+6^2}[/tex]

[tex]=\sqrt{64+36}[/tex]

[tex]=\sqrt{100}[/tex]

[tex]=10\text{ unit}[/tex]

So, the radius of the circle = [tex]\frac{10}{2}[/tex] = 5 unit,

Let the equation of the circle is,

[tex](x-h)^2+(y-k)^2=25[/tex]

Where, (h, k) is the center of the circle,

Since, points (-2, 1) and (6, 7) are on the circle,

They must satisfy the equation of the circle,

[tex](-2-h)^2+(1-k)^2 = 25[/tex]

[tex](6-h)^2+(7-k)^2=25[/tex]

By solving these equations,

We get,

h = 2, k = 4

Hence, the equation of the circle would be,

[tex](x-2)^2 +(y-4)^2=25[/tex]