Respuesta :

Answer:  [D]:  5 .
____________________________________________________
 Explanation:
____________________________________________________
The problem given is:
____________________________________________________

    25^(⅓)  * 25^(⅙)   =   ?
_______________________________________________

Note the following property, or rule, of exponents:
________________________________________________
 aᵐ * aⁿ =  a⁽ ᵐ⁺ⁿ ⁾  ; 
________________________________________________
As such:
________________________________________________
    25^(⅓)  * 25^(⅙)   =   25^[ (⅓) + (⅙) ] ;
_______________________________________________
Now, let us add:
____________________
   (⅓) + (⅙)  = ??
___________________
   (1/3) = ?/6 ?
_____________________
    (1/3) = (1*2)/(3*2) ;   {since "6 ÷ 3 = 2"} ;
__________________________________________________________
             →   (1/3) = (1*2)/(3*2) = 2/6 ;
__________________________________________________________
Now, rewrite the entire problem:
__________________________________________________________
         →   25^(⅓)  * 25^(⅙)   =   25^[ (⅓) + (⅙) ] ;
__________________________________________________________
                                             =  25^ [(2/6)+ (⅙) ] ;
__________________________________________________________
     → [ (2/6) + (⅙) ] = 3/6 ;  
__________________________________________________________
     → "3/6" can be further reduced:
___________________________________________________________
         → "3/6" = (3÷3)/(6÷3) = 1/2 ; that is: "½" .
 
         →  Alternately, by inspection, we know that: "3/6" = "½" ; ; 
             since:  "3" is one-half of "6" .
___________________________________________________________
So, let us rewrite the problem:
________________________________________________________
       →    25^(⅓)  * 25^(⅙)  =   25^[ (⅓) + (⅙) ] ;
_________________________________________________________
                                           =   25^[(2/6) + (⅙) ] ;
 ________________________________________________________
                                             = 25^(3/6) ;
_________________________________________________________
                                             = 25^(½) ;
_________________________________________________________
    →  Note the following rule, or property of exponents:
_______________________________________________
         →   ⁿ√(aᵐ)  =  [ ⁿ√(a) ] ᵐ = a^(m/n) ;
____________________________________________
So, since:  
________________________
         →   ⁿ√(aᵐ)  =  a^(m/n) ; 

then:  ↔     a^(m/n)  =   ⁿ√(aᵐ)  ;
____________________________________
And as such:
____________________________________
         →   25^(½)   = ²√(25¹) ;
_________________________________________
 So, we have:  
_________________________________________
    →  ²√(25¹) ;    Note: for "square roots", the "superscript 2" is implied, so we can eliminate that "superscript 2"; and rewrite as:
______________________________________________
    →   √(25¹) ;
________________________________________________
           Note: 25¹ = 25;  so:
_________________________________________________
    →   √(25¹) =    √25 ;
____________________________________________________
    →   √25 = 5  ; which is our answer; which corresponds to:
__________________________________________________
                          Answer choice:  [D]:  5 .
____________________________________________________