Answer: [D]: 5 .
____________________________________________________
Explanation:
____________________________________________________
The problem given is:
____________________________________________________
25^(⅓) * 25^(⅙) = ?
_______________________________________________
Note the following property, or rule, of exponents:
________________________________________________
aᵐ * aⁿ = a⁽ ᵐ⁺ⁿ ⁾ ;
________________________________________________
As such:
________________________________________________
25^(⅓) * 25^(⅙) = 25^[ (⅓) + (⅙) ] ;
_______________________________________________
Now, let us add:
____________________
(⅓) + (⅙) = ??
___________________
(1/3) = ?/6 ?
_____________________
(1/3) = (1*2)/(3*2) ; {since "6 ÷ 3 = 2"} ;
__________________________________________________________
→ (1/3) = (1*2)/(3*2) = 2/6 ;
__________________________________________________________
Now, rewrite the entire problem:
__________________________________________________________
→ 25^(⅓) * 25^(⅙) = 25^[ (⅓) + (⅙) ] ;
__________________________________________________________
= 25^ [(2/6)+ (⅙) ] ;
__________________________________________________________
→ [ (2/6) + (⅙) ] = 3/6 ;
__________________________________________________________
→ "3/6" can be further reduced:
___________________________________________________________
→ "3/6" = (3÷3)/(6÷3) = 1/2 ; that is: "½" .
→ Alternately, by inspection, we know that: "3/6" = "½" ; ;
since: "3" is one-half of "6" .
___________________________________________________________
So, let us rewrite the problem:
________________________________________________________
→ 25^(⅓) * 25^(⅙) = 25^[ (⅓) + (⅙) ] ;
_________________________________________________________
= 25^[(2/6) + (⅙) ] ;
________________________________________________________
= 25^(3/6) ;
_________________________________________________________
= 25^(½) ;
_________________________________________________________
→ Note the following rule, or property of exponents:
_______________________________________________
→ ⁿ√(aᵐ) = [ ⁿ√(a) ] ᵐ = a^(m/n) ;
____________________________________________
So, since:
________________________
→ ⁿ√(aᵐ) = a^(m/n) ;
then: ↔ a^(m/n) = ⁿ√(aᵐ) ;
____________________________________
And as such:
____________________________________
→ 25^(½) = ²√(25¹) ;
_________________________________________
So, we have:
_________________________________________
→ ²√(25¹) ; Note: for "square roots", the "superscript 2" is implied, so we can eliminate that "superscript 2"; and rewrite as:
______________________________________________
→ √(25¹) ;
________________________________________________
Note: 25¹ = 25; so:
_________________________________________________
→ √(25¹) = √25 ;
____________________________________________________
→ √25 = 5 ; which is our answer; which corresponds to:
__________________________________________________
Answer choice: [D]: 5 .
____________________________________________________