The answer is: 20 [tex] \pi [/tex] m² .
__________________________________________________________
Explanation:
__________________________________________________________
Formula for "S.A." (Surface area) of a cylinder
S.A.
= 2 [tex] \pi [/tex] r² + 2[tex] \pi [/tex] * r * h ;
_______________________________________
in which "r" = length of radius of circle at the end; and "h" = "height" ;
__________________________________________
Given: r = 2 m ; and h = 3 m ;
__________________________________________
We can "plug in" these given values; and solve for the "surface area" in terms of
"[tex] \pi [/tex]" .
____________________________________________
S.A. = 2 [tex] \pi [/tex] r² + 2[tex] \pi [/tex] * r * h ;
= 2 [tex] \pi [/tex] * (2)² + 2 [tex] \pi [/tex] * (2) * (3) ;
= 2 [tex] \pi [/tex] * (4) + 2 [tex] \pi [/tex] * (6) ;
= (8 [tex] \pi [/tex]) + (12) [tex] \pi [/tex]
= 20 [tex] \pi [/tex] m² .
_______________________________________