Respuesta :

Answer:

[tex] \implies - \frac{149}{20} \\ [/tex]

Step-by-step explanation:

[tex] \frac{ \frac{ \frac{17}{60} }{17} }{3} + ( \frac{5}{2} - \frac{21}{3} \times \frac{5}{7} )( \frac{13 \times 5}{26} + \frac{1}{2} )\\[/tex]

According to the Bodmas rule,

  • B stands for Bracket
  • O stands for order
  • D stands for Division
  • M stands for Multiplication
  • A stands for Addition
  • S stands for Subtraction

According to the question,

[tex] \implies \frac{ \frac{ \frac{17}{60} }{17} }{3} + ( \frac{5}{2} - \frac{21}{3} \times \frac{5}{7} )( \frac{13 \times 5}{26} + \frac{1}{2} ) \\[/tex]

[tex] \implies \: \frac{ \frac{ \frac{17}{60} }{17} }{3} + ( \frac{5}{2} - \frac{21 \times 5}{3 \times 7} )( \frac{65}{26} + \frac{1}{2}) \\ [/tex]

[tex] \implies \: \frac{ \frac{ \frac{17}{60} }{17} }{3} + ( \frac{5}{2} - \frac{105}{21} )( \frac{65}{26} + \frac{1}{2}) \\ [/tex]

[tex] \implies \: \frac{ \frac{ \frac{17}{60} }{17} }{3} + ( \frac{(21 \times 5 )- (2 \times 105)}{42} )( \frac{(1 \times 65 ) + (13 \times 1)}{26} ) \\ [/tex]

[tex] \implies \frac{ \frac{ \frac{17}{60} }{17} }{3} + ( \frac{105 - 210}{42})( \frac{65 + 13}{26} ) \\ [/tex]

[tex] \implies \frac{ \frac{ \frac{17}{60} }{17} }{3} + ( - \frac {105}{42})( \frac{78}{26} ) \\ [/tex]

[tex] \implies \frac{ \frac{ \frac{17}{60} }{17} }{3} + ( - \frac {105 \times 78}{42 \times 26})\\ [/tex]

[tex] \implies \frac{ \frac{ \frac{17}{60} }{17} }{3} + ( - \frac {8190}{1092})\\ [/tex]

[tex] \implies \frac{ \frac{ \frac{17}{60} }{17} }{3} - \frac {8190}{1092}\\ [/tex]

[tex] \implies \frac{17}{60} \times \frac{3}{17} - \frac{8190}{1092} \\ [/tex]

[tex] \implies \frac{17 \times 3}{60 \times 17} - \frac{8190}{1092} \\ [/tex]

[tex] \implies \frac{51}{1020} - \frac{8190}{1092} \\ [/tex]

[tex] \implies \: \frac{(91 \times51) -(85 \times 8190) }{92820} \\ [/tex]

[tex] \implies \: \frac{4641 -696150 }{92820} \\[/tex]

[tex] \implies \: - \frac{691509 }{92820} \\[/tex]

[tex] \implies \: - \frac{691509 \div 4641 }{92820 \div 4641} \\[/tex]

[tex] \implies - \frac{149}{20} \\ [/tex]