Respuesta :
Answer:
[tex]\sf x =\dfrac{2}{3}[/tex]
Explanation:
[tex]\sf \rightarrow \dfrac{x+1}{2} = \dfrac{7x-3}{2}[/tex]
cross multiply
[tex]\sf \rightarrow 2(x+1) = 2(7x-3)[/tex]
divide both sides by 2
[tex]\sf \rightarrow x + 1 = 7x-3[/tex]
isolate variables
[tex]\sf \rightarrow x -7x = -3-1[/tex]
simplify
[tex]\sf \rightarrow -6x = -4[/tex]
divide both sides by -6
[tex]\sf \rightarrow \dfrac{-6x}{-6} = \dfrac{-4}{-6}[/tex]
simplify
[tex]\sf \rightarrow x =\dfrac{2}{3}[/tex]
Answer:
[tex]x=\dfrac{2}{3}[/tex]
Step-by-step explanation:
Given equation:
[tex]\dfrac{x+1}{2}=\dfrac{7x-3}{2}[/tex]
Step 1: Multiply both sides by [tex]2[/tex].
[tex]\implies 2\left(\dfrac{x+1}{2}\right)=2\left(\dfrac{7x-3}{2}\right)[/tex]
[tex]\implies x+1=7x-3[/tex]
Step 2: Subtract [tex]7x[/tex] from both sides.
[tex]\implies x-7x+1=7x-7x-3[/tex]
[tex]\implies -6x+1=-3[/tex]
Step 3: Subtract [tex]1[/tex] from both sides.
[tex]\implies -6x+1-1=-3-1[/tex]
[tex]\implies -6x=-4[/tex]
Step 4: Divide both sides by [tex]-6[/tex] and simplify.
[tex]\implies \dfrac{-6x}{-6}=\dfrac{-4}{-6}[/tex]
[tex]\implies x=\dfrac{4}{6}=\boxed{\dfrac{2}{3}}[/tex]