Respuesta :

Reducing the three equations form non linear to linear form gives equation of the form Y = mX + c. The functions represented by Y X m snd c are written g=for each equation.

First equation

non linear form is given as

[tex]\frac{a}{y} =\frac{1}{x} +b[/tex]

converting to linear form

[tex](a)(\frac{1}{y}) =\frac{1}{x} +b[/tex]

[tex](\frac{1}{y}) = (\frac{1}{a}) (\frac{1}{x}) +\frac{b}{a}[/tex]

the linear equation gives

[tex]Y = mX + c[/tex]

where

[tex]Y = \frac{1}{y} \\m= \frac{1}{a}[/tex]

[tex]X = \frac{1}{x} \\c = \frac{b}{a}[/tex]

Second equation

non linear form is given as

[tex]y =a\sqrt{x} } -bx\\[/tex]

converting to linear equation gives

[tex]Y = mX + c[/tex]

where

[tex]Y = y \\m= a[/tex]

[tex]X = \sqrt{x} \\c = -bx[/tex]

Third equation

non linear form is given as

[tex]y= -ax^{3} + bx^{2}[/tex]

the linear equation gives

[tex]Y = mX + c[/tex]

where

[tex]Y = y \\m= -a[/tex]

[tex]X = x^{3} \\c = bx^{2}[/tex]

Read more on non linear equation here: https://brainly.com/question/22574744

#SPJ1

Otras preguntas