Find the value of abc-def
(I need work shown)

Answer:
x = 2.5 cm
Step-by-step explanation:
In Similarity triangles, the ratio of corresponding sides of the triangles are in same.
[tex]\sf \dfrac{AC}{BC}=\dfrac{DF}{EF}\\\\\\\dfrac{x}{2}=\dfrac{11.5}{9.2}\\\\\\x = \dfrac{11.5}{9.2}*2\\\\x = 2.5 \ cm[/tex]
Answer:
Hello,
Step-by-step explanation:
Since ABC is simular to DEF ,
[tex]\dfrac{AB}{DE} =\dfrac{AC}{DF} =\dfrac{BC}{EF} \\\\\dfrac{AB}{DE} =\dfrac{x}{11.5} =\dfrac{2}{9.2} \\\\\dfrac{x}{11.5} =\dfrac{2}{9.2} \\\\x=\dfrac{2*11.5}{9.2} \\\\x=\dfrac{5}{2} \\\\x=2.5\\[/tex]