Respuesta :
Answer:
This is a many-to-one function as the value of y = -1 corresponds to two values of x:
[tex]\begin{array}{|c|c|}\cline{1-2} x & y\\\cline{1-2} -3 & -1\\\cline{1-2} 0 & 0\\\cline{1-2} -2 & -1\\\cline{1-2} 8 & 1\\\cline{1-2}\end{array}[/tex]
Step-by-step explanation:
Function
A special relationship where each input (x-value) has a single output (y-value).
A function is one-to-one if each value in the range (y-values) corresponds to exactly one value in the domain (x-values).
A function is many-to-one if some values in the range (y-values) correspond to more than one (many) value in the domain (x-values).
This is a many-to-one function as the value of y = -1 corresponds to two values of x:
[tex]\begin{array}{|c|c|}\cline{1-2} x & y\\\cline{1-2} -3 & -1\\\cline{1-2} 0 & 0\\\cline{1-2} -2 & -1\\\cline{1-2} 8 & 1\\\cline{1-2}\end{array}[/tex]
This is not a function as the value of x = -5 corresponds to two values of y:
[tex]\begin{array}{|c|c|}\cline{1-2} x & y\\\cline{1-2} -5 & -5\\\cline{1-2} 0 & 0\\\cline{1-2} -5 & 5\\\cline{1-2} 6 & -6\\\cline{1-2}\end{array}[/tex]
This is not a function as the value of x = -2 corresponds to two values of y:
[tex]\begin{array}{|c|c|}\cline{1-2} x & y\\\cline{1-2} -4 & 8\\\cline{1-2} -2 & 2\\\cline{1-2} -2 & 4\\\cline{1-2} 0 & 2\\\cline{1-2}\end{array}[/tex]
This is not a function as the value of x = -4 corresponds to two values of y:
[tex]\begin{array}{|c|c|}\cline{1-2} x & y\\\cline{1-2} -4 & 2\\\cline{1-2} 3 & 5\\\cline{1-2} 1 & 3\\\cline{1-2} -4 & 0\\\cline{1-2}\end{array}[/tex]
Answer: A. The graph that starts with -3 -1
Step-by-step explanation: