Respuesta :

HERE YOU GO :)) HOPE THIS HELP. PLEASE MARK ME BRAINLIEST PLS PLS PLS THANKS
Ver imagen sharmaine223

[tex]\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: {\large{\textsf{\textbf{\underline{\underline{Answer : \:}}}}}}[/tex]

[tex] \bold{ \blue{Answer:} \sf{x = \sqrt{2} - 3, - \sqrt{2 } - 3 }}[/tex]

[tex]\bold{Step \: \: by \: \: step \: \: explanation }[/tex]

1: The expression x² + 6x + 7 fits the form a x²+ bx + c Let's complete the square, where:

[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf{a = 1} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \sf{ b = 6} \\ \sf{c = 7}[/tex]

2: Enter the constant k, which is 9 in our case.

[tex] \sf{x {}^{2} + 6x {}^{} + 9 - 9 + 7}[/tex]

3: Use Sum Square (a + b) ² = a² + 2ab + b².

[tex] \sf{(x + 3) {}^{2} - 9 + 7}[/tex]

4: Simplify

[tex] \sf{(x + 3) { }^{2} - 2}[/tex]

5: Substitute the above back into the original equation.

[tex] \sf{( x + 3) {}^{2} - 2 = 0}[/tex]

6: Add 22 to both sides.

[tex] \sf{(x + 3) {}^{2} = 2}[/tex]

7: Take the square root of both sides.

[tex] \sf{x + 3 = ± \sqrt{2}} [/tex]

8: Divide the problem into these 2 equations.

[tex]\sf{x + 3 = \sqrt{2} } \\ \: \: \: \: \: \sf{x + 3 = - \sqrt{2} }[/tex]

9: Solve the 1st equation:

[tex] \sf{ x + 3 = \sqrt{2} } \\ \sf{x = \sqrt{2} - 3 }[/tex]

10: Solve the 2nd equation.

[tex] \sf{ x + 3 = - \sqrt{2} } \\ \sf{x = - \sqrt{2} - 3 } [/tex]

11: Collect all the solutions.

[tex] \sf{x = \sqrt{2} - 3, - \sqrt{2} - 3 }[/tex]

I hope I've helped : )