Respuesta :

Using trigonometric identities, and equality is reached, hence the equality is proved.

Which trigonometric identity are used to solve this question?

These three identities are used:

  • [tex]\sin^2{x} + \cos^2{x} = 1 \rightarrow \cos^2{x} = 1 - \sin^2{x}[/tex].
  • [tex]\sec^2{x} = 1 + \tan^2{x}[/tex].
  • [tex]\sec^2{x} = \frac{1}{\cos^2{x}}[/tex]

Hence:

[tex]\sec^4{x} = \frac{1 + \tan^2{x}}{1 - \sin^2{x}}[/tex]

[tex]\sec^4{x} = \frac{\sec^2{x}}{\cos^2{x}}[/tex]

[tex]\sec^4{x} = \sec^2{x} \times \sec^2{x}[/tex]

[tex]\sec^4{x} = \sec^4{x}[/tex]

Equality is reached, hence the equality is proved.

More can be learned about trigonometric identities at https://brainly.com/question/24496175

#SPJ1