Respuesta :

By inclusion/exclusion,

[tex]n(P' \cup Q) = n(P') + n(Q) - n(P' \cap Q)[/tex]

We have

[tex]n(\xi) = n(P) + n(P') \implies n(P') = 28 - n(P)[/tex]

so that

[tex]n(P'  \cup Q) = (28 - n(P)) + n(Q) - 2n(P) = 28 - 3n(P) + n(Q)[/tex]

Now,

[tex]n(\xi) = 28 \implies n(P \cup Q) = 28 - 7 = 21[/tex]

and by inclusion/exclusion,

[tex]n(P \cup Q) = n(P) + n(Q) - n(P \cap Q)[/tex]

Decompose [tex]Q[/tex] into the union of two disjoint sets:

[tex]Q = (P \cap Q) \cup (P' \cap Q)[/tex]

Since they're disjoint,

[tex]n(Q) = n(P\cap Q) + n(P'\cap Q) \implies n(Q) = n(P\cap Q) + 2n(P)[/tex]

[tex]\implies n(P \cup Q) = n(P) + (n(P\cap Q) + 2n(P)) - n(P \cap Q)[/tex]

[tex]\implies 21 = 3n(P)[/tex]

[tex]\implies n(P) = 7[/tex]

From the Venn diagram, we see there are 3 elements unique to [tex]P[/tex] - by the way, this is the set [tex]P \cap Q'[/tex] - so [tex]n(P\cap Q) = 7-3 = 4[/tex], and it follows that

[tex]n(Q) = n(P\cap Q) + 2n(P) = 4 + 2\times7 = 18[/tex]

Finally, we get for (a)

[tex]n(P' \cup Q) = 28 - 3n(P) + n(Q) = 28 - 3\times7 + 18 = \boxed{25}[/tex]

For (b), we have by inclusion/exclusion that

[tex]n(P \cup Q') = n(P) + n(Q) - n(P \cap Q') = 7 + 18 - 3 = \boxed{22}[/tex]