Respuesta :
Answer:
- 13
Step-by-step explanation:
Solving
[tex] \frac{(x - 3)}{4} = \frac{(2x + 2)}{6} \\ \\ cross \: multiplying \\ 6 \times (x - 3) = 4 \times (2x + 2) \\ 6x - 18 = 8x + 8 \\ 6x - 8x = 8 + 18 \\ - 2x = 26 \\ dividing \: bothsides \: by \: - 2 \\ \frac{ - 2x}{ - 2} = \frac{26}{ - 2} \\ x = - 13[/tex]
Solution :
[tex] \implies \: \sf{ \dfrac{x \: - \: 3}{4} \: = \: \dfrac{2x \: + \: 2}{6} } \\ \\ \implies \: \sf{6( x \: - \: 3) \: = \:4(2x \: + \: 2)} \: \\ \\ \implies \: \sf{6 \times ( x \: - \: 3) \: = \: (2x \: + \: 2)}\\ \\ \implies \: \sf{6x \: - \: 18 \: = \:8x \: + \: 8}\\ \\ \implies \sf{6x \: - \: 8x \: = \:18\: + \: 8}\\ \\ \implies \sf{ - 2x \: = \:18\: + \: 8}\\ \\ \implies \sf{ - 2x \: = \: 26}\\ \\ \implies \sf{ - x \: = \: \dfrac{26}{2} }\\ \\ \implies \sf{ - x \: = \: \cancel{\dfrac{26}{2} }}\\ \\ \implies \sf{ - x \: = \: 13}\\ \\ \implies \red{\bf{ x \: = \: - 13}}[/tex]