Respuesta :

The region in the w-plane into which a rectangular region bounded by the lines x=0, y=0, x=1, y=2 in the z-plane is mapped under the transformation w = (1- i)z + (2 - i)  is mathematically given as

(u, v)=(2,1)

(v, v)=(3,0)

(u, u)=(3,2)

(v, u)=(2,2)

What is The region in the w-plane into which a rectangular region bounded by the lines x=0, y=0, x=1, y=2..?

Generally, the equation for is mathematically given as

[tex]&\quad(1-i) 2+(2+i) \\\\&(1-i)(x+y i)+2+i \\\\\&x-x i+y i-1 y+2+i \\\\\&(-x+y+1) i+(x+2) \\\\\[/tex]

Given - that

[tex]&x=0 \\\\&y=0 \\\\\&x=1 \\\\\&y=2 \\\\\&(0,0): v=(-0+0+1): u(0+1) \Rightarrow(u, v)=(2,1) \\\\\&(1,0): v=(-1+0+1): u(1+2) \Rightarrow(v, v)=(3,0) \\\\&(1,2): v=(-1+2+1): u(1+2) \Rightarrow C u, u)=(3,2) \\\\&(0,2): v=(-0+2+1): u(0+2) \Rightarrow(v, u)=(2,2)\\\[/tex]

Read more about Arithmetic

https://brainly.com/question/22568180

#SPJ1