Respuesta :

Answer:

[tex]\frac{1}{6}[/tex]

Step-by-step explanation:

Given

ab = [tex]\frac{1}{4}[/tex]

bc = [tex]\frac{1}{3}[/tex]

ac = [tex]\frac{1}{3}[/tex]

We will use the first equation to find b in terms of a.

b = [tex]\frac{1}{4a}[/tex]

Now we will substitute b into 2nd equation to find c in terms of a.

[tex](\frac{1}{4a} )(c)=\frac{1}{3} \\\frac{c}{4a} =\frac{1}{3} \\3c = 4a\\c = \frac{4a}{3}[/tex]

Now we will substitute c into 3rd equation to find value a.

[tex]a(\frac{4a}{3} )=\frac{1}{3} \\\frac{4a^{2} }{3} =\frac{1}{3} \\4a^{2} =1\\a^{2} =\frac{1}{4} \\a=\sqrt{\frac{1}{4} } \\=\frac{1}{2}[/tex]

Now we will substitute a into first equation to find b.

b = [tex]\frac{1}{4(\frac{1}{2}) } \\=\frac{1}{2}[/tex]

Next we will substitute a into the 3rd equation to find c.

c = [tex]\frac{4(\frac{1}{2}) }{3} \\=\frac{2}{3}[/tex]

Now we got all 3 values, when we multiply them together,

a x b x c = [tex]\frac{1}{2} *\frac{1}{2} *\frac{2}{3} \\=\frac{2}{12} \\=\frac{1}{6}[/tex]