Respuesta :

Answer:

[tex]\begin{cases}x=-6\\y=-10\end[/tex]

Step-by-step explanation:

[tex]\begin{cases}-x+3y=-24 \left(1)\right\\-4x+2y=4 \left(2)\right\end[/tex]

Make x the subject in (1)

[tex]x=3y+24 \left(3)\right[/tex]

Sub into (2)

[tex]-4(3y+24)+2y=4\\\\\implies-12y-96+2y=4\\\\\implies10y=-100\\\\y=-10[/tex]

Sub into (3)

[tex]x=-30+24\\\\x=-6[/tex]

Hence

[tex]\begin{cases}x=-6\\y=-10\end[/tex]

Answer:

[tex]\left \{ {{x=-6} \atop {y=-10}} \right. .[/tex]

Step-by-step explanation:

[tex]\left \{ {{-x+3y=-24\ \ (1)} \atop {-4x+2y=4\ \ \ (2)}} \right. \ \ \ \ \\[/tex]

We multiply equation (1) by -4:

-x+3y=-24 |*(-4)

-x*(-4)+3y*(-4)=-24*-(-4)

4x-12y=96.  (3)        ⇒

[tex]\left \{ {{4x-12y=96\ \ (3)} \atop {-4x+2y=4\ \ \ (2)}} \right.[/tex]

We summarize equations (2) and (3):

[tex]-10y=100\ |:(-10)\\y=-10.\\Make\ y \ the\ subject\ in\ (1):\\-x+3*(-10)=-24\\-x-30=-24\\-x=-24+30\\-x=6\ |*(-1)\\x=-6.[/tex]