Drag the tiles to the boxes to form correct pairs. Not all tiles will be used.
Point C divides in a particular ratio. Match point C and the ratio into which C divides with the endpoints of .

Point C(-3.6, -3.4) divides
in the ratio 2 : 3.
A(4, -3) and B(-7, 8)
Point C(4, 1.6) divides in
the ratio 3 : 2.
A(-5, 2) and B(7, 14)
Point C(3.5, -2.5) divides
in the ratio 1 : 7.
A(-2, -1) and B(-6, -7)
Point C(8, 9) divides in
the ratio 5 : 3.
A(3, 4) and B(11, 12)
Point C(-2, 5) divides in
the ratio 2 : 6.
Point C(0, 1) divides in
the ratio 4 : 7.


PLATO

Respuesta :

The point divides the line in the respective ratios. The correct matches are done.

What is division of line?

When a point lies on the line such that is gets divided into the ratio is said to be the division of line.

The coordinates of point can be find out by the following formula.

x = mx₂ +nx₁ / m+n   and y = my₂ +ny₁ / m+n

For, Point C(-3.6, -3.4) divides in the ratio 2 : 3.

Substituting the values, we get

-3.6 =  2x₂ +3x₁ / 2+3                 and           -3.4 = 2y₂ +3y₁ / 2+3

 2x₂ +3x₁ = -18                           and               2y₂ +3y₁ = -17

The above equations are satisfied by the points A(-2,-1) and B (-6,-7)

For, Point C(4, 1.6) divides in the ratio 3 : 2.

Substituting the values, we get

4 =  3x₂ +2x₁ / 2+3                     and           1.6 = 3y₂ +2y₁ / 2+3

3x₂ +2x₁ = 20                          and               3y₂ +2y₁ = 8

The above equations are not satisfied by any of the points.

For, Point C(3.5, -2.5) divides in the ratio 1 : 7.

Substituting the values, we get

3.5 =  1x₂ +7x₁ / 1+7                     and           1.6 = y₂ +7y₁ /1+7  

x₂ +7x₁ = 28                          and                y₂ +7y₁ = -20

The above equations are not satisfied by any of the points.

For, Point C(8, 9) divides in the ratio 5 : 3.

Substituting the values, we get

8 =  5x₂ +3x₁ /5+3                    and           9 = 5y₂ +3y₁ /5+3  

 5x₂ +3x₁ =64                          and                5y₂ +3y₁ = 72

The above equations are satisfied by the points A (3,4) and B(11, 12).

For, Point C(-2, 5) divides in the ratio 2 : 6.

Substituting the values, we get

-2 =  2x₂ +6x₁ /2+6                    and           5 = 2y₂ +6y₁ /2+6  

 2x₂ +6x₁  =-16                          and                2y₂ +6y₁ = 40

The above equations are satisfied by the points A (-5,2) and B(7,14).

For, Point C(0,1) divides in the ratio 4 : 7.

Substituting the values, we get

0 =  4x₂ +7x₁ /4+7                   and           1= 4y₂ +7y₁ /4+7  

 4x₂ +7x₁  = 0                      and                4y₂ +7y₁ = 11

The above equations are satisfied by the points A (4,-3) and B(-7,8).

Thus, all the equations are joined with their satisfying points.

Learn more about division of line.

https://brainly.com/question/27065786

#SPJ1