Answer:
[tex]f(x) = {x}^{2} + 4x[/tex]
Step-by-step explanation:
The graph is concave up, this means that the leading term x^2 is positive.
[tex]f(x) = {x}^{2} + 4x[/tex]
[tex]y = {x}^{2} + 4x[/tex]
For the x intercept, let y = 0
[tex] {x}^{2} + 4x = 0[/tex]
[tex]x(x + 4) = 0[/tex]
[tex]x = 0 \: \: \: or \: \: \: \: x = - 4[/tex]
The x intercepts are:
(0 , 0) and (-4 , 0)
For the y intercept, let x = 0
[tex]y = {0}^{2} + 4(0) = 0[/tex]
y intercept :
(0, 0)
For the turning point:
[tex]t.p = \frac{x1 + x2}{2} [/tex]
[tex]t.p = \frac{0 + ( - 4)}{2} = - 2[/tex]
[tex]f( - 2) = {( - 2)}^{2} + 4( - 2) = - 4[/tex]
Turning point:
(-2 , -4)
If you connect all these coordinates you will get the parabola shown in the picture.