contestada

Which polynomial function could be represented by the graph below?


A. [tex]f(x) = x^2 - 4x[/tex]

B. [tex]f(x) = x^2 + 4x[/tex]

C. [tex]f(x) = -x^2 - 4x[/tex]

D. [tex]f(x) = -x^2 + 4x[/tex]

Which polynomial function could be represented by the graph belowA texfx x2 4xtexB texfx x2 4xtexC texfx x2 4xtexD texfx x2 4xtex class=

Respuesta :

Answer:

[tex]f(x) = {x}^{2} + 4x[/tex]

Step-by-step explanation:

The graph is concave up, this means that the leading term x^2 is positive.

[tex]f(x) = {x}^{2} + 4x[/tex]

[tex]y = {x}^{2} + 4x[/tex]

For the x intercept, let y = 0

[tex] {x}^{2} + 4x = 0[/tex]

[tex]x(x + 4) = 0[/tex]

[tex]x = 0 \: \: \: or \: \: \: \: x = - 4[/tex]

The x intercepts are:

(0 , 0) and (-4 , 0)

For the y intercept, let x = 0

[tex]y = {0}^{2} + 4(0) = 0[/tex]

y intercept :

(0, 0)

For the turning point:

[tex]t.p = \frac{x1 + x2}{2} [/tex]

[tex]t.p = \frac{0 + ( - 4)}{2} = - 2[/tex]

[tex]f( - 2) = {( - 2)}^{2} + 4( - 2) = - 4[/tex]

Turning point:

(-2 , -4)

If you connect all these coordinates you will get the parabola shown in the picture.