Given:-
[tex] \\ \sf \implies \frac{ \cos(A) }{1 - \sin(A) } + \frac{ \sin(A) }{1 - \cos(A) } + 1 \\ [/tex]
To Prove :-
[tex] \\ \sf \implies \frac{ \sin(A) \cos(A) }{(1 - \sin(A)(1 - \cos(A)} \\ [/tex]
Solution:-
[tex] \\ \sf \implies \: LHS = \: \frac{ \cos(A) }{1 - \sin(A) } + \frac{ \sin(A) }{1 - \cos(A) } + 1 \\ [/tex]
[tex] \\ \sf \implies \: LHS = \: \frac{ \cos( 1 - \cos A ) + \sin A(1 -\sin A ) } {(1 -\sin A)( 1 - \cos A)}+ 1 \\ [/tex]
[tex] \\ \sf \implies \: LHS = \: \frac{\cos A - \cos {}^{2} A + \sin A - \sin {}^{2} A + (1 -\sin A)( 1 - \cos A)} {(1 -\sin A)( 1 - \cos A)}\\ [/tex]
[tex] \\ \sf \implies \: LHS = \: \frac{\cos A + \sin A - ( \cos {}^{2} A - \sin {}^{2} A )+ 1 - \cos A - \sin A + \cos A \sin A } {(1 -\sin A)( 1 - \cos A)}\\ [/tex]
[tex] \\ \sf \implies \: LHS = \: \frac{\cos A + \sin A - 1+ 1 - \cos A - \sin A + \cos A \sin A } {(1 -\sin A)( 1 - \cos A)}\\ [/tex]
[tex] \\ \sf \implies \: LHS = \: \frac { \cancel{\cos A } + \sin A - \cancel {1}+ \cancel {1 }- \cos A - \cancel {\sin A } +\cancel {\cos A } \: \: \cancel {\sin A } } {(1 -\sin A)( 1 - \cos A)}\\ [/tex]
[tex] \\ \sf \implies \frac{ \sin A \cos A }{(1 - \sin A)(1 - \cos A)} \\ [/tex]
[tex] \\ \sf \implies \: LHS = RHS \\ [/tex]
[tex] \\ \sf \implies \frac{ \cos(A) }{1 - \sin(A) } + \frac{ \sin(A) }{1 - \cos(A) } + 1 =\frac{ \sin(A) \cos(A) }{(1 - \sin(A)(1 - \cos(A)} \\\\\\ [/tex]
Hence Proved !!