Find the zeros of the quadratic polynomial f(x) = 6x²-3, and verify the relationship between the zeros and its coefficients.​

Respuesta :

Step-by-step explanation:

1) zeros of the given function:

6x²-3=0; ⇔ 6(x²-0.5)=0; ⇔ x²=0.5; ⇔

[tex]\left[\begin{array}{ccc}x=-\sqrt{0.5} \\x=\sqrt{0.5} \end{array}[/tex]

2) relationship:

if to see the equation x²-0.5=0 (ax²+bx+c=0 is standart form!), then the sum of the zeros is '0' (it is 'b' of the standart form), the product of equation roots is '-0.5' (it is 'c' of the standart form).

[tex]{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}[/tex]

★ The polynomial

f(x) = 6x² - 3

[tex]{\large{\textsf{\textbf{\underline{\underline{To \: find :}}}}}}[/tex]

★ Zeroes of the polynomial f(x) = 6x² - 3

[tex]{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}[/tex]

We have,

[tex]f(x) = \tt 6 {x}^{2} - 3[/tex]

Which can also be written as

[tex] \implies f(x) = \tt {(\sqrt{6} x)}^{2} - { (\sqrt{3}) }^{2} [/tex]

Using a² - b² = (a - b) (a + b)

[tex] \implies f(x) = \tt ( \sqrt{6} x - \sqrt{3} )( \sqrt{6} x + \sqrt{3} )[/tex]

To find the zeroes, solve f(x) = 0

[tex] \longrightarrow \tt ( \sqrt{6} x - \sqrt{3} )( \sqrt{6} x + \sqrt{3} ) = 0[/tex]

either [tex] \tt \sqrt{6} x - \sqrt{3} = 0 \: or \: \sqrt{6} x + \sqrt{3} = 0[/tex]

[tex] \implies \tt \sqrt{6} x = \sqrt{3 \: } \: or \: \: \sqrt{6} x = - \sqrt{3}[/tex]

[tex] \implies \tt x = \dfrac{ \sqrt{3} }{ \sqrt{6} } \: or \: x = - \dfrac{ \sqrt{3} }{ \sqrt{6} }[/tex]

[tex] \implies \tt x = \dfrac{ \sqrt{3} }{ \sqrt{2 \times 3} } \: or \: x = - \dfrac{ \sqrt{3} }{ \sqrt{2 \times 3} }[/tex]

[tex]\implies \tt x = \dfrac{ \cancel{ \sqrt{3} }}{ \sqrt{2} \: \cancel{\sqrt{3}} } \: or \: x = - \dfrac{ \cancel{ \sqrt{3} }}{ \sqrt{2} \: \cancel{\sqrt{3}} }[/tex]

[tex]\implies \tt x = \dfrac{1}{ \sqrt{2} } \: \: or \: \: - \dfrac{1}{ \sqrt{2} }[/tex]

Hence, the zeroes of f(x) = 6x² - 3 are:

[tex] \tt \alpha =\sf \boxed {{ \red{ \dfrac{1}{ \sqrt{2} } } }}\: \: and \: \: \beta =\sf \boxed {{ \red{ - \dfrac{1}{ \sqrt{2} } } }}[/tex]

Verification

Sum of zeroes = [tex] ( \alpha + \beta )[/tex]

[tex] = \tt \dfrac{1}{ \sqrt{2} } + \bigg(- \dfrac{1}{ \sqrt{2} } \bigg)[/tex]

[tex] = \tt \dfrac{1}{ \sqrt{2} } + - \dfrac{1}{ \sqrt{2} } [/tex]

[tex]= \tt 0[/tex]

and, [tex]\tt - \dfrac{Coefficient \: of \: x}{Coefficient \: of \: {x}^{2} }[/tex]

[tex] \tt = - \dfrac{0}{6} [/tex]

[tex] \tt = 0[/tex]

[tex] \therefore \tt \: Sum \: of \: zeroes = {\boxed{ \red{\dfrac{ \tt Coefficient \: of \: x}{ \tt Coefficient \: of \: {x}^{2}}}}}[/tex]

Also,

Product of zeroes = [tex] \alpha \beta [/tex]

[tex] = \dfrac{1}{ \sqrt{2} } \times - \dfrac{1}{ \sqrt{2} } [/tex]

[tex] = - \dfrac{1}{ 2 } [/tex]

and, [tex]\tt - \dfrac{Constant \: term}{Coefficient \: of \: {x}^{2} }[/tex]

[tex] \tt = \dfrac{ - 3}{6} [/tex]

[tex] \tt = \dfrac{ - 1}{2} [/tex]

[tex] \therefore \tt \: Product \: of \: zeroes = {\boxed{ \red{\dfrac{ \tt Constant \: term}{ \tt Coefficient \: of \: {x}^{2}}}}}[/tex]

[tex]\rule{280pt}{2pt}[/tex]